Harvesting All Matching Information To A Given Query From a Deep Website

نویسندگان

  • Mohammadreza Khelghati
  • Djoerd Hiemstra
  • Maurice van Keulen
چکیده

In this paper, the goal is harvesting all documents matching a given (entity) query from a deep web source. The objective is to retrieve all information about for instance “Denzel Washington”, “Iran Nuclear Deal”, or “FC Barcelona” from data hidden behind web forms. Policies of web search engines usually do not allow accessing all of the matching query search results for a given query. They limit the number of returned documents and the number of user requests. In this work, we propose a new approach which automatically collects information related to a given query from a search engine, given the search engine’s limitations. The approach minimizes the number of queries that need to be sent by applying information from a large external corpus. The new approach outperforms existing approaches when tested on Google, measuring the total number of unique documents found per query.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

) Proceedings of the 1 st International Workshop on Knowledge Discovery on the WEB

In this paper, the goal is harvesting all documents matching a given (entity) query from a deep web source. The objective is to retrieve all information about for instance “Denzel Washington”, “Iran Nuclear Deal”, or “FC Barcelona” from data hidden behind web forms. Policies of web search engines usually do not allow accessing all of the matching query search results for a given query. They lim...

متن کامل

Improved Skips for Faster Postings List Intersection

Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...

متن کامل

Improved Skips for Faster Postings List Intersection

Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...

متن کامل

Information Architecture of Research Institutes’ Website, Case Study: Iranian Research Institute for Information Science and Technology’s Website

Purpose: As mission-oriented organizations, research institutes have the task of answering community questions in specialized areas, and should therefore be able to effectively present their outputs to their target users. Achieving such a goal requires the proper use of information architecture principles to properly organize the information platform in which the research institutes interact wi...

متن کامل

A Position-Aware Deep Model for Relevance Matching in Information Retrieval

In order to adopt deep learning for ad-hoc information retrieval, it is essential to establish suitable representations of query-document pairs and to design neural architectures that are able to digest such representations. In particular, they ought to capture all relevant information required to assess the relevance of a document for a given user query, including term overlap as well as posit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015